Copied to
clipboard

G = C22xD28order 224 = 25·7

Direct product of C22 and D28

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22xD28, C28:2C23, D14:1C23, C14.3C24, C23.35D14, (C2xC14):6D4, C14:1(C2xD4), (C2xC4):9D14, C7:1(C22xD4), C4:2(C22xD7), (C22xC4):5D7, (C22xC28):7C2, (C23xD7):3C2, C2.4(C23xD7), (C2xC28):12C22, (C2xC14).64C23, (C22xD7):5C22, C22.30(C22xD7), (C22xC14).45C22, SmallGroup(224,176)

Series: Derived Chief Lower central Upper central

C1C14 — C22xD28
C1C7C14D14C22xD7C23xD7 — C22xD28
C7C14 — C22xD28
C1C23C22xC4

Generators and relations for C22xD28
 G = < a,b,c,d | a2=b2=c28=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 1102 in 236 conjugacy classes, 105 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C2xC4, D4, C23, C23, D7, C14, C14, C22xC4, C2xD4, C24, C28, D14, D14, C2xC14, C22xD4, D28, C2xC28, C22xD7, C22xD7, C22xC14, C2xD28, C22xC28, C23xD7, C22xD28
Quotients: C1, C2, C22, D4, C23, D7, C2xD4, C24, D14, C22xD4, D28, C22xD7, C2xD28, C23xD7, C22xD28

Smallest permutation representation of C22xD28
On 112 points
Generators in S112
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 44)(57 110)(58 111)(59 112)(60 85)(61 86)(62 87)(63 88)(64 89)(65 90)(66 91)(67 92)(68 93)(69 94)(70 95)(71 96)(72 97)(73 98)(74 99)(75 100)(76 101)(77 102)(78 103)(79 104)(80 105)(81 106)(82 107)(83 108)(84 109)
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 71)(10 72)(11 73)(12 74)(13 75)(14 76)(15 77)(16 78)(17 79)(18 80)(19 81)(20 82)(21 83)(22 84)(23 57)(24 58)(25 59)(26 60)(27 61)(28 62)(29 100)(30 101)(31 102)(32 103)(33 104)(34 105)(35 106)(36 107)(37 108)(38 109)(39 110)(40 111)(41 112)(42 85)(43 86)(44 87)(45 88)(46 89)(47 90)(48 91)(49 92)(50 93)(51 94)(52 95)(53 96)(54 97)(55 98)(56 99)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 51)(2 50)(3 49)(4 48)(5 47)(6 46)(7 45)(8 44)(9 43)(10 42)(11 41)(12 40)(13 39)(14 38)(15 37)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 56)(25 55)(26 54)(27 53)(28 52)(57 100)(58 99)(59 98)(60 97)(61 96)(62 95)(63 94)(64 93)(65 92)(66 91)(67 90)(68 89)(69 88)(70 87)(71 86)(72 85)(73 112)(74 111)(75 110)(76 109)(77 108)(78 107)(79 106)(80 105)(81 104)(82 103)(83 102)(84 101)

G:=sub<Sym(112)| (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(57,110)(58,111)(59,112)(60,85)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,101)(77,102)(78,103)(79,104)(80,105)(81,106)(82,107)(83,108)(84,109), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,100)(30,101)(31,102)(32,103)(33,104)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,85)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,99), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,51)(2,50)(3,49)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,56)(25,55)(26,54)(27,53)(28,52)(57,100)(58,99)(59,98)(60,97)(61,96)(62,95)(63,94)(64,93)(65,92)(66,91)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,112)(74,111)(75,110)(76,109)(77,108)(78,107)(79,106)(80,105)(81,104)(82,103)(83,102)(84,101)>;

G:=Group( (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(57,110)(58,111)(59,112)(60,85)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,101)(77,102)(78,103)(79,104)(80,105)(81,106)(82,107)(83,108)(84,109), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,100)(30,101)(31,102)(32,103)(33,104)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,85)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,99), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,51)(2,50)(3,49)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,56)(25,55)(26,54)(27,53)(28,52)(57,100)(58,99)(59,98)(60,97)(61,96)(62,95)(63,94)(64,93)(65,92)(66,91)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,112)(74,111)(75,110)(76,109)(77,108)(78,107)(79,106)(80,105)(81,104)(82,103)(83,102)(84,101) );

G=PermutationGroup([[(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,44),(57,110),(58,111),(59,112),(60,85),(61,86),(62,87),(63,88),(64,89),(65,90),(66,91),(67,92),(68,93),(69,94),(70,95),(71,96),(72,97),(73,98),(74,99),(75,100),(76,101),(77,102),(78,103),(79,104),(80,105),(81,106),(82,107),(83,108),(84,109)], [(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,71),(10,72),(11,73),(12,74),(13,75),(14,76),(15,77),(16,78),(17,79),(18,80),(19,81),(20,82),(21,83),(22,84),(23,57),(24,58),(25,59),(26,60),(27,61),(28,62),(29,100),(30,101),(31,102),(32,103),(33,104),(34,105),(35,106),(36,107),(37,108),(38,109),(39,110),(40,111),(41,112),(42,85),(43,86),(44,87),(45,88),(46,89),(47,90),(48,91),(49,92),(50,93),(51,94),(52,95),(53,96),(54,97),(55,98),(56,99)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,51),(2,50),(3,49),(4,48),(5,47),(6,46),(7,45),(8,44),(9,43),(10,42),(11,41),(12,40),(13,39),(14,38),(15,37),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,56),(25,55),(26,54),(27,53),(28,52),(57,100),(58,99),(59,98),(60,97),(61,96),(62,95),(63,94),(64,93),(65,92),(66,91),(67,90),(68,89),(69,88),(70,87),(71,86),(72,85),(73,112),(74,111),(75,110),(76,109),(77,108),(78,107),(79,106),(80,105),(81,104),(82,103),(83,102),(84,101)]])

C22xD28 is a maximal subgroup of
(C2xC4):9D28  (C2xC28):5D4  (C2xDic7):3D4  D28.31D4  D28:13D4  (C2xC4):6D28  C23:2D28  (C2xD28):10C4  (C2xC4):3D28  C4:C4:36D14  D28:16D4  D28.36D4  C23.48D28  C42:7D14  C42:9D14  D28:23D4  D28:19D4  D28:21D4  C14.1202+ 1+4  C14.1462+ 1+4  C22xD4xD7
C22xD28 is a maximal quotient of
C42.276D14  C23:3D28  C14.2+ 1+4  C42:8D14  C42:9D14  C42.92D14  D4:5D28  D4:6D28  Q8:5D28  Q8:6D28  C56.9C23  D4.11D28  D4.12D28  D4.13D28

68 conjugacy classes

class 1 2A···2G2H···2O4A4B4C4D7A7B7C14A···14U28A···28X
order12···22···2444477714···1428···28
size11···114···1422222222···22···2

68 irreducible representations

dim111122222
type+++++++++
imageC1C2C2C2D4D7D14D14D28
kernelC22xD28C2xD28C22xC28C23xD7C2xC14C22xC4C2xC4C23C22
# reps112124318324

Matrix representation of C22xD28 in GL4(F29) generated by

28000
0100
0010
0001
,
28000
02800
0010
0001
,
28000
0100
00257
00520
,
1000
02800
00025
0070
G:=sub<GL(4,GF(29))| [28,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[28,0,0,0,0,1,0,0,0,0,25,5,0,0,7,20],[1,0,0,0,0,28,0,0,0,0,0,7,0,0,25,0] >;

C22xD28 in GAP, Magma, Sage, TeX

C_2^2\times D_{28}
% in TeX

G:=Group("C2^2xD28");
// GroupNames label

G:=SmallGroup(224,176);
// by ID

G=gap.SmallGroup(224,176);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,579,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^28=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<